0040-4039(95)02272-4 ## A New Cyclobutane Ring Contraction: the Base-Induced Rearrangement of an α-Bromocyclobutanecarboxylic Ester Karine Estieu, Jean Ollivier and Jacques Salaün* Laboratoire des Carbocycles (Associé au CNRS), Institut de Chimie Moléculaire d'Orsay, Bât. 420, Université de Paris-Sud, 91405 Orsay (France) Abstract: Contrary to previous reports, reactions of methyl α-bromocyclobutanecarboxylate 6b with potassium hydroxide or carbonate lead exclusively to 1-(hydroxymethyl)cyclopropanecarboxylic acid 7. The easy interconversions which occur among cyclobutane, cyclopropane and open-chain related frameworks have been extensively studied. Thus the stereospecific rearrangement of α -halo- or α -tosyloxy cyclobutanones into cyclopropanecarboxylic acid derivatives, has been shown to involve addition of nucleophiles (e.g., H₂O, EtOH, EtONa, NaOH, NH₃, LiAlH₄, CH₃MgI, ...) to the carbonyl carbon atom. Thus is produced the intermediary 1 which then undergo a concerted displacement of the halide (or tosyloxy) group X, concomitant with 1,2-migration of the C α '-C carbonyl bond, *i.e.* following the mechanism of the so-called semi-benzilic rearrangement. 1 X = Cl, Br, TsO Nu = HO, NH₂, RO, H, R We report herein the unexpected but related ring contraction of an α -bromocyclobutanecarboxylic acid and ester, likely involving the intermediary 2. For our current investigations we needed the 1-hydroxy cyclobutanecarboxylic acid 5 as starting material. Reported approaches to this required α -hydroxy acid involve either the acid-induced hydrolysis of cyclobutanone cyanohydrin,³ the direct oxidation by oxygen of the enolate anion 4 derived from cyclobutanecarboxylic acid 3^4 by treatment with 3 equiv. of lithium diisopropylamide,⁵ or the bromination of 3 followed by reaction with aqueous potassium hydroxide ⁶ or aqueous potassium carbonate.⁷ Effectively, as reported, slow addition of 2 equiv. of bromine to acid 3^4 in the presence of 10% of dry amorphous phosphorus, followed by heating at 90°C for 3 h, led after pouring the mixture into an excess of water or methanol, to α -bromocyclobutanecarboxylic acid **6a** (55%) or methyl ester **6b** (90%), respectively. However, reactions of the bromoester **6b** either with refluxing aqueous potassium hydroxide or with potassium carbonate solutions do not lead, as previously claimed, 6.7 to the α -hydroxy acid $5^{3.4}$ but exclusively to the 1-(hydroxymethyl)cyclopropanecarboxylic acid 7.9 Moreover, formation of 7 was also observed upon treatment of 6b with a 0.1 M solution of KOH in water at room temperature: 18% after 3 hours and quantitatively within 18 hours, respectively. This β-hydroxyacid which constitutes an useful synthon, has been isolated in 95% yield after liquid chromatography; it was previously obtained in 43% yield from potassium permanganate partial oxidation of 1,1-bis(hydroxymethyl) cyclopropane.¹⁰ Comparatively, solvolysis of **6b** in refluxing glacial acetic acid containing 1.1 equiv. of silver acetate was not so selective 1,2 and led to methyl 1-acetoxymethylcyclopropanecarboxylate (43%), besides 12% of a homoallylic isomer from ring opening. ¹¹ Most probably the base induced ring contraction **6b** \rightarrow 7 involves the intermediary 2, which undergoes displacement of the bromine atom concerted with an 1,2-migration of the C_2 - C_3 bond and nucleophilic substitution at C_2 either by a hydroxide or carbonate anion, or also likely intramolecularly by a carboxylate anion. Acknowledgement: The authors thank the CNRS and Rhone-Poulenc Agrochimie for financial support. ## REFERENCES AND NOTES - For a review see Salatin, J. in The Chemistry of the Cyclopropyl Group, Rappoport Z. ed. Wiley, New York, 1987, pp. 809-878. - 2. Conia, J. M.; Salaün, J. Acc. Chem. Res., 1972, 5, 33-40. - 3. Conley, R. T. Rec. Trav. Chim. Pays-Bas, 1962, 81, 198-201. - 4. Heisig, G. B.; Stodola, F. H Org. Synth. Vol. III, 1967, 213-216. - 5. Stenstrom, Y.; Jones, W.M. Organometallics, 1986, 5, 178-180. - 6. Perkin Jr, W. H.; Jones, W. M. J. Chem. Soc., 1892, 61, 36-66. - 7. Demjanow, N. J.; Dojarenko, M. Chem. Ber., 1922, 55B, 2737-2742. - 8 B.p.: 74° C/17 mm; IR (CDCl₃): 3010, 2960, 2850, 1740 ($\nu_{C=O}$), 1440 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ : 1.80 1.92 (m, 1H); 2.18 2.23 (m, 1H), 2.25 2.67 (m, 2H), 2.84 2.96 (m, 2H), 3.79 (s, 3H); ¹³C NMR (50 MHz) δ : 16.37, 36.93, 52.68, 53.68, 171.47; MS (CI, NH₃) (m/z): 210 (M⁺+18, 86), 212 (M⁺+18, 76). - 9. IR (CDCl₃): 3600, 3000 and 1700 ($v_{C=O}$) cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ : 0.96 (dd, J = 7.1 and 4.3 Hz, 2H); 1.35 (dd, J = 7.1 and 4.3 Hz), 3.64 (s, 2H), 5.10 (broad s, 2H); ¹³C NMR (62.8 MHz) δ : 14.61, 25.47, 65.31, 180.35; MS (CI, NH₃) (m/z): 134 (M⁺+18, 100). - 10. Geffken, D.; Zinner, G. Chem. Ber., 1973, 106, 2246-2254. - 11. Taylor, K. G.; Nichols V. N.; Isaac, R.; Poindexter, G. S. J. Org. Chem. 1974, 39, 1761-1763.